Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
European Journal of Human Genetics ; 31(Supplement 1):342, 2023.
Article in English | EMBASE | ID: covidwho-20238003

ABSTRACT

Background/Objectives: Despite intensive research of the novel coronavirus SARS-CoV-2 and COVID-2019 caused by it, factors affecting the severity of the disease remains poorly understood. Clinical manifestations of COVID-2019 may vary from asymptomatic form to pneumonia, acute respiratory distress syndrome (ARDS) and multiorgan failure. Features of individual genetic landscape of patients can play an important role in development of the pathological process of COVID-19. In this regard the purpose of this study was to investigate the influence of polymorphic variants in genes (ADD1, CAT, IL17F, IL23R, NOS3, IFNL3, IL6, F2, F13A1, ITGB3, HIF1A, MMP12, VEGFA), associated with cardiovascular, respiratory and autoimmune pathologies, on the severity of COVID-19 and post-COVID syndrome in patients from Russia. Method(s): The study included 200 patients recovered from COVID-19. Two groups of patients were formed in accordance with clinical manifestations: with mild and moderate forms of the disease. The polymorphic variants were analysed with real-time PCR using commercial kits (Syntol). Result(s): 13 SNPs (rs4961;rs1001179;rs612242;rs11209026;rs2070744;rs8099917;rs1800795;rs1799963;rs5985;rs5918;rs11549465;rs652438;rs699947) were genotyped and comparative analysis of allele frequency distribution was carried out in two groups of patients recovered from COVID-2019. Conclusion(s): Identification of polymorphic variants in genome associated with severity of pathological processes in patients infected with SARS-CoV-2 can contribute to the identification of individuals with an increased risk of severe infection process and can also serve as a basis for developing personalized therapeutic approaches to the treatment of post-COVID syndrome.

2.
Journal of Biological Chemistry ; 299(3 Supplement):S50, 2023.
Article in English | EMBASE | ID: covidwho-2319986

ABSTRACT

Study objective. It has been shown that human common viruses are new target genes for host cell dioxin receptor transcriptional (AhR-ARNT) complex initially proven to up-regulate mammalian genes containing dioxin-response elements (DRE) in the promoters [doi:10.1016/j.ijid.2012.05.265]. Initially, transactivation of HIV-1 and HBV by 2,3,7,8-tetrachlodibenzop- dioxin (TCDD) at low nanomolar range was demonstrated [doi:10.3109/00498259309057034]. Noteworthy, transactivation of human cytomegalovirus (CMV) was shown with 0.3 ppt dioxin, i.e. lower than its current background level in the general population (~3.0 ppt). Recently, reactivation of CMV infection was found to influence worse clinical outcome following SARS-CoV-2 infection (doi: 10.1186/s12979-020- 00185-x). Other findings showed that CMV and herpes simplex virus 1 (HSV-1) reactivation were observed in immunocompetent patients with COVID-19 acute respiratory distress syndrome (ARDS) (doi.org/10.1186/s13054-020-03252-3). Addressing occurrence of Herpesviridae reactivation in severe COVID-19 patients, and still unspecified real triggers of CMV and HSV-1 reactivations, we tested TCDD, which current body burden (DBB) ranges from 20 pg/g (TEQ in fat) in general population to 100 pg/g in older people. Methods. In Silico quantitation of active DRE in promoters of viral genes. Virus DNA hybridization assay. Clinical and epidemiological analyses. Results and Discussion. In this study, a computational search for DRE in CMV and HSV-1 genes was performed by SITECON, a tool recognizing potentially active transcriptional factor binding sites. In silico analysis revealed in regulatory region of CMV IE genes from 5 to 10 DRE, and from 6 to 8 DRE in regulatory region of HSV-1 IE genes.We established that a low picomolar TCDD can trigger up-regulation of CMV and HSV-1 genes via AhR:Arnt transcription factor in macrophage(doi.org/10.1016/ j.ijid.2012.05.265) and glial human cell lines (doi.org/10.1016/j. jalz.2016.06.1268), respectively. In fact, viral reactivation may be triggered in COVID-19 ARDS patients by higher pulmonary TCDD concentrations, because "lipid storm" within lungs of severe COVID-19 patients has been recently reported (doi.org/ 10.1101/2020.12.04.20242115). TCDD is known as the most potent xenobiotic, which bioaccumulates and has estimation half-life in humans of up to 10 yr. Due to hydrophobic character (Log P octanol/water: 7.05), TCDD partitions into inflammatory lipids in lung tissue thus augmenting its local concentration. Population-based epidemiological data on SARS-CoV-2 first wave of pandemic revealed high level of CMV seropositivity and cumulative mortality rate 4.5 times in Lombardi region of Italy, where after Seveso industrial accident TCDD plasma level in pre-exposed subjects is 15 times the level in rest of Italy (doi. org/10.3389/fpubh.2020.620416). Also, Arctic Native (AN) peoples consume dioxin-contaminated fat in seafood and have TCDD DBB, i.e. 7 times that in general population. To the point of this paper, their COVID-19 mortality is 2.2 times of that among non-AN Alaskans (doi: 10.15585/mmwr.mm6949a3). Conclusion(s): TCDD in the picomolar range may trigger CMV expression in lung cells and commit virus to the lytic cycle, which can be applied to reactivation of Herpesviridae infection in immunocompetent patients with COVID-19 ARDS syndrome.Copyright © 2023 The American Society for Biochemistry and Molecular Biology, Inc.

4.
Journal of Hypertension ; 41:e88-e89, 2023.
Article in English | EMBASE | ID: covidwho-2238590

ABSTRACT

Background: Acute respiratory distress syndrome (ARDS) is a distinctive feature of severe COVID-19 infections that occurs mainly in patients with coexisting health problems, such as hypertension, atherosclerosis, and diabetes. Endothelial dysfunction is a major contributing factor during ARDS development in COVID- 19 patients with pre-existing comorbidities. Objective: Studying the mechanism by which endothelial activation and dysfunction could provide a therapeutic target for COVID-19 treatment. Design and method: The current study measured endothelial dysfunction and oxidative stress by incubating human umbilical vein endothelial cells (HUVECs) with plasma from patients with mild, moderate, severe and extremely severe COVID- 19. Using flow cytometry, wound-healing assays and phosphokinase arrays, Results: We detected increases in cell apoptosis;reactive oxygen species (ROS) formation;hypoxia-inducible factor-1 alpha (HIF-1 alpha), vascular cell adhesion molecule-1 (VCAM-1), and vascular endothelial growth factor receptor-1 (VEGFR-1) expression;viral entry;and inflammatory-related protein activity. We also found an impairment in the wound-healing process. Moreover, we found that AT1R blockade and P38 MAPK inhibition reversed all of these effects, especially in the severe group. Conclusions: These findings indicate that AT1R/P38 MAPK-mediated oxidative stress and endothelial dysfunction occur during COVID-19 infection.

5.
Mol Biol Rep ; 50(3): 2471-2478, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2174670

ABSTRACT

BACKGROUND: Due to the growing evidence of the importance of iron status in immune responses, the biomarkers of iron metabolism are of interest in novel Coronavirus Disease 2019 (COVID-19). The present prospective study was carried out to compare iron status indicated by levels of ferritin with the levels of two novel biomarkers related to iron homeostasis, hephaestin and hypoxia-inducible factors-1 (HIF-1α) in the serum of patients with COVID-19 in comparison with a control group. METHODS AND RESULTS: Blood samples from 34 COVID-19 patients and from 43 healthy volunteers were collected and the levels of HEPH and HIF-1α were measured by ELISA and compared with levels of serum ferritin. COVID-19 patients had higher serum levels of ferritin than those levels in control group (P < 0.0001). Conversely levels of HIF-1α and HEPH in the COVID-19 group were significantly lower than those of control group (P < 0.0001 for both). An inverse correlation between hephaestin and ferritin as well as between HIF-1α and ferritin was found among all subjects (P < 0.0001), and among COVID-19 patients, but not to statistical significance. CONCLUSION: Levels of hephaestin and HIF-1α were found to be inversely related levels of ferritin across all participants in the study, and to our knowledge this is the first report of hephaestin and HIF-1α as potential markers of iron status. Further studies are needed to corroborate the findings, utilizing a broader range of markers to monitor inflammatory as well as iron status.


Subject(s)
COVID-19 , Ferritins , Humans , Hypoxia , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Iron/metabolism , Prospective Studies , SARS-CoV-2/metabolism
6.
Annals of the Rheumatic Diseases ; 81:7-8, 2022.
Article in English | EMBASE | ID: covidwho-2008870

ABSTRACT

Background: An interferon gene signature (IGS) is present in approximately 50% of early, treatment naive rheumatoid arthritis (eRA) patients. We previously demonstrated it negatively impacts on initial disease outcomes. Objectives: To 1) reproduce previous fndings demonstrating the harmful effects of the IGS on early RA clinical outcomes, 2) identify which IFN class is responsible for the IGS and 3) seek evidence that IFN-a exposure contributes to harmful epigenetic footprint at disease onset. Methods: In a large multicentre inception cohort (n=190) of eRA patients (RA-MAP TACERA) whole blood transcriptome, IGS (MxA, IFI44L, OAS1, ISG15, IFI6) and circulating interferons (IFN)-a,-β,-y and-), was examined at baseline and 6 months in conjunction with disease activity and clinical characteristics. A separate eRA cohort of paired methylome and transcriptome from CD4 T and CD19 B cells (n=41 for each) was used to explore any epigenetic influence of the IGS. Results: The baseline IGS reproducibly and signifcantly negatively impacts on 6-month clinical outcomes. In the high IGS cohort there was increased DAS-28 (p=0.025) and reduced probability of achieving a good EULAR response (p=0.034) at 6-months. In addition, the IGS in eRA is shown for the frst time to predominantly refect raised circulating IFN-a protein, not other classes of IFN and examination of whole blood upstream nucleic acid sensors expression suggest a RNA trigger. Both the IGS and IFN-a signifcantly fell in parallel at 6 months (p<0.0001), whereas other classes of IFN remained statistically static. There was a signifcant association with IFN-a and RF titre but not ACPA. Comparison of CD4 T and CD19 B cells between IGS high and low eRA patients demonstrated differentially methylated CPG sites and altered transcript expression of disease relevant genes e.g. PARP9, STAT1, EPTSI1 which was similarly, and persistently altered 6 months in the separate TACERA cohort. Differentially methylated CPGs implicated altered transcription factor binding in B cells (GATA3, ETSI, NFATC2, EZH2) and T cells (p300, HIF1a) which cumulatively suggested IFN-a induced epigenetic changes promoting increased, and sustained, lymphocyte activation, proliferation and loss of anergy in the IGS high cohort. Conclusion: We validate that the IGS is a robust prognostic biomarker in eRA predicting poor therapeutic response. Its persistent harmful effects may be driven via epigenetic modifcations. These data have relevance for other IFN-a states, such as COVID-19, but also provide a rationale for the initial therapeutic targeting of IFN-a signalling, such as with JAKi, at disease onset in stratifed eRA subsets.

7.
Natural Product Communications ; 17(7), 2022.
Article in English | EMBASE | ID: covidwho-1956964

ABSTRACT

Objective: The Chinese herbal formula Huo-Xiang-Zheng-Qi (HXZQ) is effective in preventing and treating coronavirus disease 19 (COVID-19) infection;however, its mechanism remains unclear. This study used network pharmacology and molecular docking techniques to investigate the mechanism of action of HXZQ in preventing and treating COVID-19. Methods: The Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) was used to search for the active ingredients and targets of the 10 traditional Chinese medicines (TCMs) of HXZQ prescription (HXZQP). GeneCards, Online Mendelian Inheritance in Man (OMIM), Pharmacogenomics Knowledge Base (PharmGKB), Therapeutic Target Database (TTD), and DrugBank databases were used to screen COVID-19-related genes and intersect them with the targets of HXZQP to obtain the drug efficacy targets. Cytoscape 3.8 software was used to construct the drug-active ingredient–target interaction network of HXZQP and perform protein–protein interaction (PPI) network construction and topology analysis. R software was used to perform Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Finally, AutoDock Vina was utilized for molecular docking of the active ingredients of TCM and drug target proteins. Results: A total of 151 active ingredients and 250 HXZQP targets were identified. Among these, 136 active ingredients and 67 targets of HXZQP were found to be involved in the prevention and treatment of COVID-19. The core proteins identified in the PPI network were MAPK1, MAPK3, MAPK8, MAPK14, STAT3, and PTGS2. Using GO and KEGG pathway enrichment analysis, HXZQP was found to primarily participate in biological processes such as defense response to a virus, cellular response to biotic stimulus, response to lipopolysaccharide, PI3K-Akt signaling pathway, Th17 cell differentiation, HIF-1 signaling pathway, and other signaling pathways closely related to COVID-19. Molecular docking results reflected that the active ingredients of HXZQP have a reliable affinity toward EGFR, MAPK1, MAPK3, MAPK8, and STAT3 proteins. Conclusion: Our study elucidated the main targets and pathways of HXZQP in the prevention and treatment of COVID-19. The study findings provide a basis for further investigation of the pharmacological effects of HXZQP.

8.
Clin Nutr Open Sci ; 44: 144-154, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1907612

ABSTRACT

SARS-CoV-2 (Severe Acute Respiratory Syndrome-Coronavirus-2) is the most dangerous form of the coronavirus, which causes COVID-19. In patients with severe COVID-19, the immune system becomes markedly overactive. There is evidence that supplementation with select micronutrients may play a role in maintaining immune system function in this patient population. Throughout the COVID-19 pandemic, significant emphasis has been placed on the importance of supplementing critical micronutrients such as Vitamin C and Zinc (Zn) due to their immunomodulatory effects. Viral infections, like COVID-19, increase physiological demand for these micronutrients. Therefore, the purpose of this review was to provide comprehensive information regarding the potential effectiveness of Vitamin C and Zn supplementation during viral infection and specifically COVID-19. This review demonstrated a relation between Vitamin C and Zn deficiency and a reduction in the innate immune response, which can ultimately make patients with COVID-19 more vulnerable to viral infection. As such, adequate intake of Vitamin C and Zn, as an adjunctive therapeutic approach with any necessary pharmacological treatment(s), may be necessary to mitigate the adverse physiological effects of COVID-19. To truly clarify the role of Vitamin C and Zn supplementation in the management of COVID-19, we must wait for the results of ongoing randomized controlled trials. The toxicity of Vitamin C and Zn should also be considered to prevent over-supplementation. Over-supplementation of Vitamin C can lead to oxalate toxicity, while increased Zn intake can reduce immune system function. In summary, Vitamin C and Zn supplementation may be useful in mitigating COVID-19 symptomology.

9.
Topics in Antiviral Medicine ; 30(1 SUPPL):152-153, 2022.
Article in English | EMBASE | ID: covidwho-1880804

ABSTRACT

Background: Neurological manifestations are a major complication of sudden acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and likely contribute to symptoms of "long COVID". Elucidating the mechanisms that underlie neuropathogenesis in infection is critical for identifying or developing viable therapeutic strategies. While neurological injury in infection is varied, cerebrovascular disease is seen at a high frequency among patients over 50 years of age. Additionally, microhemorrhages and hypoxic-ischemic injury are often described in brain autopsy series of human subjects who died from COVID-19. Here, we report neuropathology in aged SARS-CoV-2 infected non-human primates (NHPs) is consistent with that observed in aged human subjects and provide insight into the underlying cause. Methods: Four adult Rhesus macaques and four African green monkeys were inoculated with the 2019-nCoV/USA-WA1/2020strain of SARS-CoV-2 via a multi-route mucosal or aerosol challenge. Two of each species were included as age-matched controls. Frontal, parietal, occipital, and temporal lobes, basal ganglia, cerebellum, and brainstem were interrogated through histopathological and immunohistochemical techniques to identify and characterize the observed pathology. Results: Like humans, pathology was variable but included wide-spread inflammation with nodular lesions, neuronal injury, and microhemorrhages. Neuronal degeneration and apoptosis were confirmed with FluoroJade C and cleaved caspase 3 IHC, which showed foci of positivity, particularly among cerebellar Purkinje cells. This was seen even among infected animals that did not develop severe respiratory disease but was not seen in age-matched controls. Significant upregulation of the alpha subunit of hypoxia inducible factor 1 (HIF1-α), indicative of tissue hypoxia, was observed in brain of all infected animals, regardless of disease severity. Sparse virus was detected in brain endothelial cells but did not associate with the severity of CNS injury. Conclusion: SARS-CoV-2 infected NHPs are a viable animal model for advancing our current understanding of infection-associated neuropathogenesis. Upregulation of HIF1-α in brain of infected animals suggests cerebral hypoxia may underlie or contribute to neuroinflammation and neuronal injury/death and may provide some insight into neurological manifestations observed among asymptomatic patients or those only suffering mild disease.

10.
Cell Mol Life Sci ; 79(3): 143, 2022 Feb 20.
Article in English | MEDLINE | ID: covidwho-1701908

ABSTRACT

Numerous pharmaceutical drugs have been repurposed for use as treatments for COVID-19 disease. These drugs have not consistently demonstrated high efficacy in preventing or treating this serious condition and all have side effects to differing degrees. We encourage the continued consideration of the use of the antioxidant and anti-inflammatory agent, melatonin, as a countermeasure to a SARS-CoV-2 infection. More than 140 scientific publications have identified melatonin as a likely useful agent to treat this disease. Moreover, the publications cited provide the rationale for the use of melatonin as a prophylactic agent against this condition. Melatonin has pan-antiviral effects and it diminishes the severity of viral infections and reduces the death of animals infected with numerous different viruses, including three different coronaviruses. Network analyses, which compared drugs used to treat SARS-CoV-2 in humans, also predicted that melatonin would be the most effective agent for preventing/treating COVID-19. Finally, when seriously infected COVID-19 patients were treated with melatonin, either alone or in combination with other medications, these treatments reduced the severity of infection, lowered the death rate, and shortened the duration of hospitalization. Melatonin's ability to arrest SARS-CoV-2 infections may reduce health care exhaustion by limiting the need for hospitalization. Importantly, melatonin has a high safety profile over a wide range of doses and lacks significant toxicity. Some molecular processes by which melatonin resists a SARS-CoV-2 infection are summarized. The authors believe that all available, potentially beneficial drugs, including melatonin, that lack toxicity should be used in pandemics such as that caused by SARS-CoV-2.


Subject(s)
Antioxidants/therapeutic use , Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , Melatonin/therapeutic use , SARS-CoV-2/drug effects , COVID-19/virology , Humans
11.
Int J Mol Sci ; 22(16)2021 Aug 10.
Article in English | MEDLINE | ID: covidwho-1662670

ABSTRACT

Hypoxic conditions induce the activation of hypoxia-inducible factor-1α (HIF-1α) to restore the supply of oxygen to tissues and cells. Activated HIF-1α translocates into the nucleus and binds to hypoxia response elements to promote the transcription of target genes. Cathepsin L (CTSL) is a lysosomal protease that degrades cellular proteins via the endolysosomal pathway. In this study, we attempted to determine if CTSL is a hypoxia responsive target gene of HIF-1α, and decipher its role in melanocytes in association with the autophagic pathway. The results of our luciferase reporter assay showed that the expression of CTSL is transcriptionally activated through the binding of HIF1-α at its promoter. Under autophagy-inducing starvation conditions, HIF-1α and CTSL expression is highly upregulated in melan-a cells. The mature form of CTSL is closely involved in melanosome degradation through lysosomal activity upon autophagosome-lysosome fusion. The inhibition of conversion of pro-CTSL to mature CTSL leads to the accumulation of gp100 and tyrosinase in addition to microtubule-associated protein 1 light chain 3 (LC3) II, due to decreased lysosomal activity in the autophagic pathway. In conclusion, we have identified that CTSL, a novel target of HIF-1α, participates in melanosome degradation in melanocytes through lysosomal activity during autophagosome-lysosome fusion.


Subject(s)
Cathepsin L/physiology , Hypoxia-Inducible Factor 1, alpha Subunit/physiology , Melanosomes/metabolism , Animals , Cathepsin L/genetics , Cell Hypoxia/genetics , Cells, Cultured , Gene Expression Regulation , Melanocytes/metabolism , Mice , NIH 3T3 Cells
12.
Mater Today Proc ; 60: 1606-1610, 2022.
Article in English | MEDLINE | ID: covidwho-1587038

ABSTRACT

Coronavirus disease -19 (COVID-19) pandemic has extended from late 2019 and continues to this day. The degree of the disease is related to some factors, including age and comorbidities. Obesity is now more widely considered as a main factor of infection, mainly because it has been shown that individuals who are obese have a more severe course of infection with COVID-19. This review study summarized the relationship between the risk of obesity and COVID-19 and detected a difference in reporting from the period of the first pandemic in China to more recent studies. Obesity is a risk factor for developing signs and symptoms of patients with COVID-19 and this review will benefit clinicians by recognizing the role of obesity when giving COVID-19 diagnosis, follow-up, and treatment programs.

13.
Cell Rep ; 37(6): 109920, 2021 11 09.
Article in English | MEDLINE | ID: covidwho-1530684

ABSTRACT

It is urgent to develop disease models to dissect mechanisms regulating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Here, we derive airway organoids from human pluripotent stem cells (hPSC-AOs). The hPSC-AOs, particularly ciliated-like cells, are permissive to SARS-CoV-2 infection. Using this platform, we perform a high content screen and identify GW6471, which blocks SARS-CoV-2 infection. GW6471 can also block infection of the B.1.351 SARS-CoV-2 variant. RNA sequencing (RNA-seq) analysis suggests that GW6471 blocks SARS-CoV-2 infection at least in part by inhibiting hypoxia inducible factor 1 subunit alpha (HIF1α), which is further validated by chemical inhibitor and genetic perturbation targeting HIF1α. Metabolic profiling identifies decreased rates of glycolysis upon GW6471 treatment, consistent with transcriptome profiling. Finally, xanthohumol, 5-(tetradecyloxy)-2-furoic acid, and ND-646, three compounds that suppress fatty acid biosynthesis, also block SARS-CoV-2 infection. Together, a high content screen coupled with transcriptome and metabolic profiling reveals a key role of the HIF1α-glycolysis axis in mediating SARS-CoV-2 infection of human airway epithelium.


Subject(s)
COVID-19/metabolism , Glycolysis/physiology , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Lung/metabolism , Organoids/metabolism , Animals , Cell Line , Chlorocebus aethiops , Epithelial Cells/metabolism , HEK293 Cells , Humans , Pluripotent Stem Cells/metabolism , SARS-CoV-2/pathogenicity , Transcriptome/physiology , Vero Cells
14.
Medicina (Kaunas) ; 57(10)2021 Sep 28.
Article in English | MEDLINE | ID: covidwho-1444269

ABSTRACT

In some subjects with inherited pheochromocytoma/paraganglioma (PPG) syndromes, hypoxia-inducible factor 1 alpha (HIF1α) stabilization/activation could lead to an increase in angiotensin converting enzymes (ACE). This would result in the stimulation of angiotensin (AT) II production and, hence, reduce the availability of ACE 2. The latter would provide decreased numbers of binding sites for the spike protein of SARS-CoV-2 and, therefore, result in less points of viral entry into cells. Thus, subjects with HIF1α-associated PPG syndromes may benefit from an inherent protective effect against COVID-19. Such an implication of HIF1α vis-à-vis COVID-19 could open ways of therapeutic interventions.


Subject(s)
Adrenal Gland Neoplasms , COVID-19 , Paraganglioma , Pheochromocytoma , Adrenal Gland Neoplasms/genetics , Angiotensin-Converting Enzyme Inhibitors , Humans , Paraganglioma/genetics , Pheochromocytoma/genetics , SARS-CoV-2 , Syndrome
15.
Trials ; 22(1): 534, 2021 Aug 12.
Article in English | MEDLINE | ID: covidwho-1352669

ABSTRACT

BACKGROUND: Recent studies point to a lower number and reduced severity of cases in higher altitude cities with decreased oxygen concentration. Specific literature has shown several benefits of physical training, so, in this sense, physical training with hypoxic stimulus appears as an alternative that supports the conventional treatments of the COVID-19 patient's recovery. Thus, this study's primary aim is to analyze the effects of moderate-intensity intermittent hypoxic training on health outcomes in COVID-19 recovered patients. METHODS: A clinical trial controlled double-blind study was designed. Participants (30-69 years old) will be recruited among those with moderate to severe COVID-19 symptoms, approximately 30 days after recovery. They will be included in groups according to the training (T) and recovery (R) association with hypoxia (H) or normoxia (N): (a) TH:RH, (b) TN:RH, (c) TN:RN, and last (d) the control group. The 8-week exercise bike intervention will be carried out with a gradual load increase according to the established periods, three times a week in sets of 5 min, 90 to 100% of the anaerobic threshold (AT), and a 2.5-min break. Blood will be collected for genotyping. First, after 4 weeks (partial), after 8 weeks, and later, 4 weeks after the end of the physical training intervention, participants will perform assessments. The primary outcome is the maximum oxygen consumption (VO2peak). The secondary outcomes include lung function, inflammatory mediators, hematological, autonomic parameters, AT, body composition analysis, quality of life, mental health, anthropometric measurements, and physical fitness. The statistical analysis will be executed using the linear regression model with mixed effects at a 5% significance level. DISCUSSION: This study is designed to provide evidence to support the clinical benefits of moderate-intensity intermittent hypoxic training as a part of the treatment of patients recovered from COVID-19. It may also provide evidence on the efficacy and safety of intermittent hypoxic training in different health conditions. Lastly, this study presents an innovative strategy enabling up to 16 participants in the same training session. TRIAL REGISTRATION: ClinicalTrials.gov RBR-5d7hkv. Registered after the start of inclusion on 3 November 2020 with the Brazilian Clinical Trials Registry.


Subject(s)
COVID-19 , Adult , Aged , Humans , Hypoxia/diagnosis , Hypoxia/therapy , Middle Aged , Quality of Life , Randomized Controlled Trials as Topic , SARS-CoV-2 , Treatment Outcome
16.
Adv Exp Med Biol ; 1304: 187-204, 2021.
Article in English | MEDLINE | ID: covidwho-1237450

ABSTRACT

Reactive oxygen species (ROS), either derived from exogenous sources or overproduced endogenously, can disrupt the body's antioxidant defenses leading to compromised redox homeostasis. The lungs are highly susceptible to ROS-mediated damage. Oxidative stress (OS) caused by this redox imbalance leads to the pathogenesis of multiple pulmonary diseases such as asthma, chronic obstructive pulmonary disease (COPD), and acute respiratory distress syndrome (ARDS). OS causes damage to important cellular components in terms of lipid peroxidation, protein oxidation, and DNA histone modification. Inflammation further enhances ROS production inducing changes in transcriptional factors which mediate cellular stress response pathways. This deviation from normal cell function contributes to the detrimental pathological characteristics often seen in pulmonary diseases. Although antioxidant therapies are feasible approaches in alleviating OS-related lung impairment, a comprehensive understanding of the updated role of ROS in pulmonary inflammation is vital for the development of optimal treatments. In this chapter, we review the major pulmonary diseases-including COPD, asthma, ARDS, COVID-19, and lung cancer-as well as their association with ROS.


Subject(s)
COVID-19 , Lung Diseases , Antioxidants/therapeutic use , Humans , Inflammation , Oxidation-Reduction , Oxidative Stress , Reactive Oxygen Species , SARS-CoV-2
17.
Chronobiol Int ; 38(8): 1120-1134, 2021 08.
Article in English | MEDLINE | ID: covidwho-1180371

ABSTRACT

The influence of low intensity electromagnetic fields on circadian clocks of cells and tissues has gained increasing scientific interest, either as a therapeutic tool or as a potential environmental hazard. Nuclear Magnetic Resonance (NMR) refers to the property of certain atomic nuclei to absorb the energy of radio waves under a corresponding magnetic field. NMR forms the basis for Magnetic Resonance Imaging, Magnetic Resonance Spectroscopy and, in a low-intensity form, for NMR therapy (tNMR). Since the circadian clock is bi-directionally intertwined with hypoxic signaling in vertebrates and mammals, we hypothesized that low intensity electromagnetic fields, such as tNMR, might not only affect circadian clocks but also Hypoxia-Inducible Factor-1α (HIF-1α). As master regulator of the hypoxic signaling pathway, HIF-1α is known to dampen the circadian amplitude under reduced oxygen availability, while the hypoxic response of cells and organisms, itself, is tightly clock controlled. In a first experiment, we investigated if tNMR is able to act as Zeitgeber for the core clock mechanism of unsynchronized zebrafish and mouse fibroblast cells, using direct light irradiation and treatment with the glucocorticoid Dexamethasone as references. tNMR significantly affected the cell autonomous clocks of unsynchronized mouse fibroblast cells NIH3-T3, but did not act as a Zeitgeber. Similar to light irradiation and in contrast to treatment with Dexamethasone, tNMR did not synchronize expression profiles of murine clock genes. However, irradiation with tNMR as well as light significantly altered mRNA and protein expression levels of Cryptochrome1, Cryptochrome2 and Clock1 for more than 24 h. Changes in mRNA and protein after different treatment durations, namely 6 and 12 h, appeared to be nonlinear. A nonlinear dose-response relationship is known as hallmark of electromagnetic field induced effects on biological systems. The most prominent alterations were detected in murine HIF-1α protein, again in a nonlinear dose-response. In contrast to murine cells, zebrafish fibroblasts did not respond to tNMR at all. Light, a potent Zeitgeber for the peripheral clocks of fish, led to the expected synchronized clock gene oscillations of high amplitude, as did Dexamethasone. Hence, we conclude, mammalian peripheral clocks are more susceptible to tNMR than the direct light entrainable fish fibroblasts. Although light and tNMR did not act as Zeitgebers for the circadian clocks of unsynchronized murine cells, the significant observed effects might indicate downstream cell-physiological ramifications, which are worth future investigation. However, beside the effects tNMR exerts on the core clock mechanism of mammalian cells, the technology might be the first non-pharmacological approach to modify HIF-1α protein in cells and tissues. HIF-1α and the associated circadian clock play key roles in diseases with underlying ischemic background, such as infarct, stroke, and cancer and, also infectious diseases, such as Covid-19. Hence, low intensity magnetic fields such as tNMR might be of significant medical interest.


Subject(s)
Circadian Clocks , Electromagnetic Fields , Hypoxia-Inducible Factor 1/metabolism , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy , 3T3 Cells , Animals , Circadian Rhythm , Electromagnetic Fields/adverse effects , Fibroblasts , Humans , Hypoxia/metabolism , Magnetic Resonance Imaging/adverse effects , Magnetic Resonance Spectroscopy/adverse effects , Mice , Time Factors , Zebrafish
18.
Front Mol Biosci ; 7: 627842, 2020.
Article in English | MEDLINE | ID: covidwho-1058430

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, as coronavirus disease 2019 (COVID-19) pandemic, has killed more than a million people worldwide, and researchers are constantly working to develop therapeutics in the treatment and prevention of this new viral infection. To infect and induced pathogenesis as observed in other viral infections, we postulated that SARS-CoV-2 may also require an escalation in the anabolic metabolism, such as glucose and glutamine, to support its energy and biosynthetic requirements during the infection cycle. Recently, the requirement of altered glucose metabolism in SARS-CoV-2 pathogenesis was demonstrated, but the role of dysregulated glutamine metabolism is not yet mentioned for its infection. In this perspective, we have attempted to provide a summary of possible biochemical events on putative metabolic reprograming of glutamine in host cells upon SARS-CoV-2 infection by comparison to other viral infections/cancer metabolism and available clinical data or research on SARS-CoV-2 pathogenesis. This systematic hypothesis concluded the vital role of glutaminase-1 (GLS1), phosphoserine aminotransferase (PSAT1), hypoxia-inducible factor-1 alpha (HIF-1α), mammalian target of rapamycin complex 1 (mTORC1), glutamine-fructose amidotransferase 1/2 (GFAT1/2), and transcription factor Myc as key cellular factors to mediate and promote the glutamine metabolic reprogramming in SARS-CoV-2 infected cells. In absence of concrete data available for SARS-CoV-2 induced metabolic reprogramming of glutamine, this study efforts to connect the gaps with available clinical shreds of evidence in SARS-CoV-2 infection with altered glutamine metabolism and hopefully could be beneficial in the designing of strategic methods for therapeutic development with elucidation using in vitro or in vivo approaches.

19.
Gene Rep ; 22: 101012, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-1002539

ABSTRACT

Recently an outbreak that emerged in Wuhan, China in December 2019, spread to the whole world in a short time and killed >1,410,000 people. It was determined that a new type of beta coronavirus called severe acute respiratory disease coronavirus type 2 (SARS-CoV-2) was causative agent of this outbreak and the disease caused by the virus was named as coronavirus disease 19 (COVID19). Despite the information obtained from the viral genome structure, many aspects of the virus-host interactions during infection is still unknown. In this study we aimed to identify SARS-CoV-2 encoded microRNAs and their cellular targets. We applied a computational method to predict miRNAs encoded by SARS-CoV-2 along with their putative targets in humans. Targets of predicted miRNAs were clustered into groups based on their biological processes, molecular function, and cellular compartments using GO and PANTHER. By using KEGG pathway enrichment analysis top pathways were identified. Finally, we have constructed an integrative pathway network analysis with target genes. We identified 40 SARS-CoV-2 miRNAs and their regulated targets. Our analysis showed that targeted genes including NFKB1, NFKBIE, JAK1-2, STAT3-4, STAT5B, STAT6, SOCS1-6, IL2, IL8, IL10, IL17, TGFBR1-2, SMAD2-4, HDAC1-6 and JARID1A-C, JARID2 play important roles in NFKB, JAK/STAT and TGFB signaling pathways as well as cells' epigenetic regulation pathways. Our results may help to understand virus-host interaction and the role of viral miRNAs during SARS-CoV-2 infection. As there is no current drug and effective treatment available for COVID19, it may also help to develop new treatment strategies.

SELECTION OF CITATIONS
SEARCH DETAIL